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Recognizing Partially Occluded Parts
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Abstract-The problem of recognizing an object from a partially oc-
cluded boundary image is considered, and the concept of saliency of a
boundary segment is introduced. Saliency measures the extent to
which the boundary segment distinguishes the object to which it be-
longs from other objects which might be present. An algorithm is
presented which optimally determines the saliency of boundary seg-
ments of one object with respect to those of a set of other objects. An
efficient template matching algorithm using templates weighted by
boundary segment saliency is then presented and employed to recognize
partially occluded parts. The results of these experiments illustrate the
effectiveness of the new technique.

Index Terms-Hough transform, least squares, occluded parts, saliency,
weighted template matching.

I. INTRODUCTION
THE problem of recognizing partially occluded parts is of

considerable interest in the field of industrial automation.
While it is possible to employ shakers, conveyor belts, and cus-
tom machinery to separate, palletize, or otherwise prearrange
the parts for easy recognition, a vision system which can recog-
nize the parts even though they may be partially occluded and
in random positions is much more flexible. Attempting to
match a model, or template, of the boundary of the part with
the boundary of the image has been suggested for this problem
[12], [13]. If a position of the template can be found for
which a large number of its boundary pixels matches those of
-the image, it may be concluded that the part has been found.
Unfortunately, in its basic form, this procedure requires an
excessive amount of computation and can produce a number
of false matches resulting in unreliable recognition. This paper
presents an efficient method of template matching which is
based on matching subtemplates, and by which the subtem-
plates are optimally weighted to distinguish those of the ob-
ject being sought from those derived from other objects which
might be present.

In a typical industrial scene, the parts may be intermixed,
partially occluded, and of unknown pose (position and orienta-
tion); however, the types of parts that will be present are al-
most always known a priori. We assume that there is available
a database describing the geometry of all the parts that could
conceivably appear in the scene. This database could be con-
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structed during a "learning" phase, or it could be constructed
by a computer aided design (CAD) system as a byproduct of
the design process. The latter method is likely to predominate
in the future as CAD systems become more sophisticated and
capable of being integrated into a "factory-of-the-future" en-
vironment. Indeed, work in this direction has already begun;
for example, silhouettes and grasppoints for parts can auto-
matically be extracted from CAD data and organized into a
suitable database for part handling [4], [5 ], [18], [19] .

From the database of part geometries, boundary templates
for every stable position of every part are determined, and a
set of subtemplates which most differentiate the parts is iden-
tified. The subtemplates in this set are called salient features.
Salient features depend on the set of parts being considered.
To illustrate this point, consider Fig. 1. Fig. l(a) shows the
salient features when parts A and B comprise the set of parts,
while Fig. 1(b) shows the salient features when parts A and C
comprise the set of parts (salient features are shown as heavy
lines). Those features of A's boundary which most distinguish
it are clearly dependent on the set of parts, i.e., on the context
in which A could potentially be viewed. To make this concept
more precise, a measure of saliency is introduced to denote the
distinctiveness of a subtemplate. The saliency of a subtem-
plate corresponds to the optimal (in the least-squares sense)
weighting mentioned above and is defined on the closed inter-
val [0, 1] (see Section IV). By giving saliency a continuous
range, the pose of a part that is partially occluded can be ac-
curately determined if the visible portion of the part matches
some set of subtemplates with enough combined saliency.
Preliminary versions of some of the concepts used in the ap-

proach to partially occluded part recognition developed in this
paper were first reported in [16] and [17] . For the most part,
the approach is most suitable for fairly flat parts of known
scale. However, work in progress suggests that the technique
is more general and may be extended to three dimensions, in
which case the concept of saliency still applies, but the sub-
templates are no longer boundary segments, rather surface sub-
regions. Even with the above restrictions, the technique applies
to a wide range of industrial applications.
This paper is organized as follows. Section II gives the back-

ground for the techniques to be employed, including a brief
summary of the Hough transform which motivated portions
of this work. Section III develops an efficient template match-
ing scheme based on an extension of the Hough transform that
uses subtemplates. Section IV addresses the problem of deter-
mining the saliency of subtemplates for a set of parts. Section
V presents some experimental results which illustrate the ef-

0162-8828/85/0700-0410$01.00 © 1985 IEEE

410



TURNEY etal.: RECOGNIZING PARTIALLY OCCLUDED PARTS

Part A

(a)

Part A

Part B

Part C

(b)
Fig. 1. Context dependency of salient features.

fectiveness of using saliency for recognizing partially occluded
parts. Section VI concludes with a discussion on further direc-
tions for research, in particular, proposals for improving rec-

ognition times.

II. BACKGROUND

The approach to recognizing partially occluded parts devel-
oped in this paper works with the shape of their boundaries.
In the context of the intended application-recognizing and
locating fairly flat machined parts-this choice retains that
aspect of the parts which conveys a significant amount of in-
formation useful for recognition; at the same time, it allows us

to work with a relatively compact boundary representation of
the scene.

The scene in which the parts appear will be referred to as the
application scene. It is digitized into a two-dimensional array
of pixels, I(1 < x < M, 1 < y < N: x and y integer), which can

take on values from a set of gray levels. The boundary repre-
sentation of the parts in the application scene is called the
boundary image. Although its machine representation is usually
in a compact form, such as a linked list, it can be thought of as

a function B(x, y) which is defined on the same domain as I
and which has the value one at boundary pixels, and zero else-
where. Boundary pixels and their slope angles' are extracted
from the application scene so that only the strongest boundary
pixels which maintain continuity remain [7]. The output is
the boundary image. It is the boundary image against which
the templates are matched to locate the part in the application
scene. For this discussion, a template T(x, y) can also be
thought of as a binary valued function defined similarly to B,
but with a smaller domain (1 Ax Am, 1 .y An: m «<M
and n << N). Furthermore, template pixels will be considered

1A pixel's slope angle is the angle of the tangent to the boundary at
that pixel.

to be those pixels that are, strictly speaking, boundary pixels
of the template, i.e., where T(x,y) has the value of one.
As mentioned earlier, template matching is performed using

an extension of the Hough transform. The following subsec-
tion gives a brief summary of the Hough transform and its re-
lationship to normal template matching.

A. The Hough Transform and Template Matching
The Hough transform was originally designed to identify

colinear subsets of points within larger sets of points [8] . Sub-
sequently, a number of significant improvements has been
made to the original transform. In particular, Merlin and Far-
ber generalized it to identify arbitrary sets of points [10] . We
begin by describing how this version of the transform can be
used to identify the position of "best match" of a template
T(x, y) to a boundary image B(x, y).
Assume that B(x, y) is produced from the application scene

in the manner outlined above. Associated with each pixel in
B is an accumulator whose purpose is to record template
matches. This two-dimensional array of accumulators is as-
sumed to be initially zero. A reference point is selected that
is fixed with respect to T; we used T's centroid because it was
useful in a related project where a robot was required to grasp
the part, but any appropriate reference point may be used. A
template T*(x, y) is formed by rotating T 180° about its cen-
troid. The centroid of T* is placed at a boundary pixel in B
and every accumulator that coincides with a pixel of T* is in-
cremented by one (see Fig. 2). This procedure is repeated for
each boundary pixel in B. When all the boundary pixels have
been visited, the accumulator with the largest value identifies
the position of the centroid of template T that gives the best
match.
Sklansky demonstrated in [15] that the function produced

in the accumulator array by the above procedure is the convo-
lution of B with T* which is simply the cross correlation or
template matching T with B. Since the Hough transform is
equivalent to template matching, it performs the function of a
matched filter and, therefore, is the optimum filter when B is
corrupted by additive white Gaussian noise under a wide variety
of criteria: signal-to-noise, likelihood ratio, and inverse prob-
ability [6, ch. 7] . However, none of these criteria implies that
it is optimal for recognizing one shape in the presence of others
(see the discussion on normalized correlation in Rosenfeld and
Kak [14] ), suggesting that template matching is by no means
sufficient for recognizing partially occluded parts.
In [15], it is also suggested that the Hough transform could

be improved if local properties of the boundary pixels were
used to restrict the set of accumulators that are incremented.
Less computation would be needed and fewer false matches
would occur, i.e., the "Q" of the filter would be increased.
Ballard [2] presents an improved version of the Hough trans-
form in which the slope of the boundary pixels is used to re-
strict the set of accumulators that are incremented. This is
achieved by performing the Hough transform in the following
way. Create a set of vectors, V= {vi, ij= 1, *, T|}, from
each pixel ti on the boundary of T to T's centroid. When the
vectors in V are all originated at the same point, they trace

411



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 4, JULY 1985

T

Fig. 2. Hough transform.
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Fig. 3. Creating T* from V.

v2 v3

at b1,
at the
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Fig. 4. Slope restricted Hough transform.

the rotated template T* (see Fig. 3). Therefore, the above
procedure of Merlin and Farber can be performed equivalently
by originating the vectors at a boundary image pixel and incre-
menting the accumulators pointed to by each of the vectors;
this step is then repeated for every pixel on the boundary
image. The equivalence between the Hough transform and
template matching can be seen if it is considered that originat-
ing a vector vi at a boundary pixel bj is, in effect, proposing bj
as a match for the template pixel ti, and voting for that match
by incrementing the accumulator pointed to by vi. Restrictions
can be applied by simply using subsets of V at each boundary
point. In Ballard's version of the Hough transform, the slope
of the boundary pixel is used to select only those vi whose
corresponding ti have the same slope2 (see Fig. 4). This ap-
proach has already shown some success in an industrial applica-
tion [1]. In the next section, the idea of local restriction is
taken one stage further by requiring that a pixel's neighboring
pixels satisfy a certain configuration or subtemplate.
The computational complexity of the Hough transform (and

hence template matching) can increase rapidly if it is necessary

2In the original description of the algorithm, the perpendicular to the
slope-the gradient-was used.

to deal with variations in orientation and scale. For example,
the above procedure for the Hough transform assumes a fixed
orientation of T* (or T). To account for variations in orienta-
tion, the complete procedure must be repeated for every orien-
tation to be distinguished. In other words, if it is required to
distinguish between orientations that are 10 apart, the proce-
dure must be repeated 360 times, resulting in 360 accumulator
arrays. The best match would then be identified by the accu-
mulator with the largest value in all of the 360 arrays. A simi-
lar complexity arises if the scale of the parts is not known in
advance-all sizes of T to be distinguished must be tried.
The next section presents a technique based on an extension

of the Hough transform which uses subtemplates. This tech-
nique reduces the complexity that arises from the need to con-
sider variations in orientation; however, variations in scale are
not dealt with. In addition, and more importantly, subtem-
plates provide convenient boundary features that can receive
salient weightings (see Fig. 1).

III. SUBTEMPLATE MATCHING
Let T be a template of the boundary of a part. A set r of

overlapping boundary subtemplates {Tj} are created from tem-
plate T. Each subtemplate ri has an associated vector vi that
points to the location of the centroid of T. The Hough trans-
form can now be modified by requiring that a segment of the
boundary image centered on a particular pixel b1 match ri
before vi can be originated at bj. In addition, one can intro-
ducd a coefficient of match between -T and the boundary seg-
ment (see below) and use this to allow the accumulator pointed
to by vi to be incremented by a fractional value. In our experi-
ments, each Ti was 20 pixels in length and T&/2 subtemplates
were created for each template T, i.e., each template pixel was
part of 10 subtemplates. The choice of the length and the
number of subtemplates is application dependent.

In the process of matching the subtemplates with the bound-
ary, it is important to place the subtemplate in the correct
orientation. This can be achieved efficiently if the subtemplate
and the boundary image segments are represented in their
intrinsic coordinate system in which the angle of slope 0 and
the arc length along the boundary s act as coordinates for
pixels [3], [12], [13]. This will be referred to as the 0 - s
representation of a boundary. The 0 - s representation allows
subtemplates and boundary image segments to be characterized
by functions of the form 6(s). An important property of these
intrinsic functions is that a change in orientation Q. of a bound-
ary in x - y space corresponds to simply adding 0, to 0(s) in
0 - s space. The slope 0 is determined, as mentioned before,
during boundary extraction, while s is determined by measur-
ing the distance in pixels along the boundary image (see Sec-
tion II). The values of the arc length s for a boundary are
dependent to some extent on the orientation of the boundary
because of the different amounts of quantization noise intro-
duced into the boundary image at different orientations. This
noise also causes an accumulated error in the determination of
the true arc length. In our experiments, the effects of quanti-
zation noise were minimized by fitting a simple third-order
interpolating polynomial to the points on the curve. The s
values were extracted from the interpolated boundary.
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s- arclength in pixels

(b)
Fig. 5. A boundary image and its 0 - s representation.

(a)

55 1l0 165 220 275 330

s -- arclength in pixels

(b)
Fig. 6. A template and its 0 - s representation.

Fig. 5(a) shows a boundary image containing a partially oc-

cluded part between pixels bk and bl. Fig. 5(b) displays its
0 - s representation when the boundary is traced counter-
clockwise. Fig. 6(a) shows the complete template of the par-
tially occluded part in Fig. 5; a subtemplate is shown with a

heavy line. Fig. 6(b) shows the 0 - s representation of the
template.
Matching starts by choosing a subtemplate Tr from the tem-

plate boundary and attempting to match-it against an equal
length segment of the boundary image ,i3 centered at pixel bj.
The attempted match is performed in 0 - s space at regularly

spaced boundary image pixels, bj, j = 1, *, ,1, where Ij3 is
the number of boundary segments. In our experiments, the
spacing was every other boundary image pixel; as with subtem-
plate length and number, spacing is application dependent.
Strictly speaking, since the matching is performed in 0 - s

space, the 0 - s graph of ri, Ori(s) is matched against the 0 - s

graph of ,i3, 0:g(s). Conceptually, this can be thought of as
moving 07i(s) along the s axis direction in the 0 - s graph of
the boundary image OB(s) and performing a match at regularly
spaced points (see Fig. 7). The matching operation is repeated
for a "representative" set of subtemplates for the part. In the
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Fig. 7. Matching in 0 - s space.
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Fig. 8. Matching in x -yj, space.

experiments reported in Section V, the representative set is
taken to be all the subtemplates. However, preliminary results
mentioned in the Conclusion suggest various strategies for
selecting this representative set that significantly improve
recognition times.
As noted earlier, it is important to get the subtemplates in

the correct orientation before matching. This was done by
taking a least-squares fit in 0 - s space of the subtemplate to
the boundary segment. Consider the quantity

h

zij = E [0 j(sp) - (OTi(Sp) + oil)] 2

p=1

where h is the number of pixels in Ti and ,I3 (recall, in our ex-

periments h = 20), and Oij is a single variable used to adjust the
fit. Let 0!' represent the value of Oij at which yij takes on a

minimum. It is easy to show that 0i is equal to the difference
between the average slope of the boundary segment and the
average slope of the subtemplate, i.e., l= Qg - i. Thus, the
minimum value of -1j is achieved by simply shifting the slopes
of the subtemplate points by Oi before they are subtracted
from the slopes of the boundary segment points (see Fig. 7).
The shift in 0 corresponds to an angular rotation of the sub-

template to the average orientation of the boundary image
segment. Fig. 8 shows the corresponding match between the
subtemplate and the boundary image segment in x - y space.

A measure of the mismatch between the rotated version of
subtemplate ri and the boundary image segment,j is given by
the minimum value of yij. Denote this value as 'y*, then

zi= [0p(sp) - (0s(s) + Os*j)]2
p=1

Using tyi we can define a matching coefficient which gives a

measure of the match between a subtemplate and a boundary
image segment. Let

cii

The matching coefficient cij is used to adjust the contribution
added to the accumulator during subtemplate matching, and it
is defined in the above manner so that values close to 0 imply
a very poor match and values close to 1 imply a very good
match (O< cij1 1).

In order to locate the potential centroid for template T (and
hence the part that T represents), the vector vi, associated
with subtemplate ri, is rotated by the angle Oi and is originated
at the center of the boundary image segment, as shown in Fig.
8. The accumulator pointed to by vi is then incremented by
the quantity cijwi where wi is the saliency of T1 mentioned in
the Introduction (see also, the next section). The result of
matching a subtemplate 'r1 with a boundary segment 'j is thus
characterized by two factors: the similarity of T0 and f3j (mea-
sured by c0j), and the significance of finding a match for Ti in
recognizing the part from which ri is derived (measured by wi).
In addition, the angular difference Oi is appended to a linked

list associated with the same pixel as the accumulator pointed
to by vi. At the end of all the subtemplate matching, the list
of angles associated with the pixel which is judged to be at T's
centroid is averaged to estimate the orientation of T. As be-
fore, T's centroid is judged to be the pixel whose associated
accumulator contains the greatest number.
The above method for subtemplate matching provides a sim-

ple technique for performing a least-squares fit. In addition,

. Dn180

90

0 -

/ IIj'
220 275 330
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the method does not rely on long connected boundary images;
if the boundary image is fragmented, the subtemplates are
matched to each fragment. However, the value chosen for h
(the number of pixels in a subtemplate) does determine a lower
limit on the size of usefiil fragments.

IV. DETERMINING THE SALIENCY OF SUBTEMPLATES

As mentioned in Section I, by properly weighting subtem-
plates, emphasis can be given to those features which distin-
guish an object-the salient features. Thus, partially occluded
parts can be recognized if features with enough saliency are ex-
posed. This section develops an algorithm by which salient
weights can be automatically assigned to the subtemplates.
The algorithm works off line with the database of part geom-

etries, specifically the subtemplates derived from the part
geometries. It has the advantage that a new part geometry can
be introduced into the database and new weights can readily
be assigned to all the subtemplates affected by the addition of
the new part. The algorithm optimally adjusts the weights of
subtemplates so that different templates correlate poorly with
one another.

First, for simplicity, only two templates A and B will be con-
sidered. They may be derived from different parts or from
different stable positions of the same part. Assume that tem-
plate A consists of ITrI subtemplates ri and that each subtem-
plate is assigned a positive weight wi. Assume, furthermore,
that each Ti is matched with each of the IOB| boundary segments
f3j of B. Although A and B are both templates, it is convenient
for this explanation to consider A to be a template and B a
boundary image. If subtemplate ri of A matches a boundary
segment fj of B, a symbolic record of the match c1jwi is stored
at the accumulator pointed to by vi. Let s be a unique index
into the accumulator array defined by s = (N - 1)* row_
index + column_index for an M X N array. The symbolic
value stored at accumulator s is a variable wi and a numerical
value cqj, the matching coefficient, derived through the sub-
template matching process described in the previous section.
Fig. 9 illustrates the contributions that accumulator s might
receive from matching subtemplates with boundary segments.
Since template A has Irj subtemplates, and B has i3| subtem-
plates, J-1 |,B matches are attempted.
After all the subtemplate matching is completed, accumulator

s contains a linear function in 171 variables wi, i = 1, * * ,
Let this function be as, then

|TI I,B
S= EE 6iC1w1

i=1 j=1

where 5b is a selector function that takes the value 1 if s re-
ceives a contribution from a match between subtemplate Ti
and boundary segment f3; 5J- takes the value 0 otherwise. The
above equation can be written in matrix form as

a =Dw

where the vector w has the elements wi, and D is an (M X N) X

-u

Tl

Clm WI cuv wu

Accumulator s contains

Fig. 9. Computing saliency.

T matrix with nonnegative elements given by

311
= z1
j=1

In practice, D is very sparse.
As noted above, the objective of the weighting algorithm is

to adjust the weights wi so as to minimize the correlation of
template A with boundary B. The approach taken is to mini-
mize the sum of the squares of all of the as's. This results in
the subtemplates that are most unlike others-the most salient
ones-receiving the greatest weights. The problem may be stated
as follows:

MXN
Minimize: a = ata = wtDtDw

s=1s = 1

Subject to: wlW= I and w >0

where 1 is a r |-dimensional vector of l's and 0 is a r -dimen-
sional vector of O's. Given w, a nonzero vector of weights, kw
(k > 0) will produce the same ordering in the accumulator array
and hence the same solution to the part location problem. Ac-
cordingly, the constraint 1 tw = 1 is used to provide a normal-
ization of the weights and to avoid the degenerate solution
w=0.
The constraint 1 tw = 1 is a hyperplane normal to the vector

1 and at a distance of Tr-1/2 from the origin. The surfaces of
constant value of the function wtDtDw are hyperellipsoids.
The constrained solution occurs for the value which makes the
corresponding hyperellipse tangent to the constraining hyper-
plane. When the ratio of maximum-to-minimum eigenvalues
of DtD is large (as is often the case in this application) and the
major axis of the hyperellipsoid is skewed so as to be nearly
parallel to the hyperplane, large negative and large positive
weights can occur. Fig. 10 shows a two-dimensional example
in which positive and negative weights result-S is the solution
point. In terms of the matched filter interpretation of Section
II, this amounts to creating a very high "Q" filter for the part. In
other words, using the weights to recognize the part in an appli-
cation scene results in the contents of the array of accumulators
forming a sharp peak at the location of the part's centroid, if it
is present. This narrow bandwidth is obtained, in part, by the
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matrix for identifying A in the presence of B and C is, given
the disjoint accumulators assumption, computed as follows:

1 w > 1

x

Y

EAB = EA E
A

EABC E~A+ B + E

w

w, Ewtw = 1
w Ew

Fig. 10. Minimal solutions in two dimensions.

weighted contributions to the accumulators cancelling one

another everywhere except close to the centroid. If positive
and negative weights are allowed, there is a danger of creating
neighboring positive and negative peaks which should cancel
but do not due to noise and quantization (the weights are

determined from noiseless images derived from the database of
part geometries). The constraint w > 0 "detunes" the filter
and prevents this from occurring. In terms of Fig. 10, the
solution point is moved to R.

It is convenient to restate the minimization problem in a

slightly different form by letting E denote the product DtD. E
is then symmetric and, although the D matrix is typically an

extremely large sparse (M X N) X TI matrix (consider M = N =

256), E is a much smaller X 7T matrix. The above minimi-
zation problem becomes

M XN
Minimize: a2 =ata =wtEw

s = I

Subject to: _tw = 1 and w > 0.

This can be transformed to a standard least-squares problem
and solved accordingly (see [9] ). Details can be found in the

Appendix.
In the above discussion, weights were chosen for template A,

so that its correlation with the boundary of B would be mini-

mized everywhere. More than two parts can be taken into

consideration. For example, if parts A, B, and C are to appear

in a scene and it is required to distinguish part A, then it is
necessary to minimize both 2se{B} a2 and 1sE{C} a2, where
the sets {B} and {C} denote the accumulators that receive con-

tributions from parts B and C, respectively. Assume that {B}
and {C} are disjoint (disjoint accumulators assumption), then
the correlation matrix for A correlated with both B and C,
EBC, is related to the E matrices for A correlated with B and
A correlated with C by the relation

wtE- cwZaC L a> £ aswt(E+EC)w.
s se{B} se{C}

If it is required to recognize the correct orientation of A, then
the autocorrelation of A should also be minimized. (The con-

straint 1 tw = 1 ensures that the accumulator corresponding to
the correct match always has a value of one.) The associated
autocorrelation matrix is denoted by EA. The correlation

The correlation matrix EABC can then be used in the weighting
algorithm to obtain values for the weights wi of the subtem-
plates of A.
The solution to the weights gives precision to the term

"saliency." The weights may be interpreted as the saliency of
the subtemplate of A with respect to parts B and C. Further-
more, the weights distinguish, in a precise least-squares sense,

each subtemplate of A from B, C, and other subtemplates of A,
allowing the recognition of A in the presence of B and/or C
even if A is partially occluded by B and/or C. The degree of
occlusion possible depends on how much saliency is visible.

In summary, the pairwise correlation matrices EZi are deter-

mined from the database of part geometries by computing the

D matrices using the subtemplate matching process of Section
III. They can then be added according to the particular part(s)
required to be recognized. An Esetof parts matrix will result

for each part i to be recognized. A separate set of weights can

then be computed, as outlined above, for use in the recognition
of each part. This can amount to a considerable amount of

computation. However, in the type of environment envisioned

for this recognition algorithm-a CAD-driven manufacturing
cell, for instance-the computation is performed as part of a

set-up phase and reused over a much longer period of time.

Adding a new part to the database amounts to finding the

weighting matrix E,ew between the new part and every other

member j of the database and adding them to the Eset of parts,
then recomputing the sets of salient weights. Removing an

old part from consideration can be done in a similar fashion
by first subtracting E1Id from the E' of pars

Finally, it should be noted that the Elets of parts matrices are

constructed on the disjoint accumulator assumption. This is
equivalent to ignoring the possibility of accidental contribu-
tions to an accumulator that can occur in practice and result
in faulty recognition. In fact, this rarely occurs while the as-

sumption greatly simplifies the calculation of saliency.

V. EXPERIMENTAL RESULTS

Fig. 11 illustrates the results of an experiment to test the
recognition technique. Fig. 11(a) shows three keys, two of
which (key A and key C) are very similar in appearance. In
Fig. 11 (b), key B has been placed on key A, occluding key A;
key C remains unoccluded. An attempt was made to locate
key A in the application scene depicted in Fig. 11 (b) using the
slope restricted Hough transform [2] . Fig. 11(c) illustrates
how the location of key A in Fig. 1 l(b) was incorrectly deter-
mined to be at the location of key C. Table I shows the largest
peaks in the accumulator array and their location after the
above experiment. They are ranked according to the value of
their contents-the value shown is actually the true value nor-

malized by the total weight of all the subtemplates from key
A scaled by 1000. The accumulators form a 256 X 256 array,

and the accumulator locations shown are of the form abscissa,
ordinate.

W1
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(d)(c)
Fig. 11. The three keys experiment.

TABLE I
ACCUMULATOR ARRAY FOR SLOPE RESTRICTED HOUGH TRANSFORM

Rank Value Accumulator Coordinates

100 101 (188,145)
99 82 (188,143)
98 82 (188,144)
97 82 (188,146)
96 74 (188,133)
95 72 (188,128)

36 46 (188,165)
35 44 ( 56,118) S
34 44 (187,144)

The peak that corresponds to the centroid of key A -shown
next to a bullet-is at (56, 118) and is ranked 65 places below
the maximum which is the centroid of key C at (188, 145).
Next, an attempt was made to locate key A in the applica-

tion scene depicted in Fig. 1l(b) using the weighted subtem-
plate method. This attempt was successful and Fig. 1l(d)
illustrates how key A was correctly located. Table II shows
the contents of the accumulators; the maximum peak is at the
location of A's centroid, (56, 118).
The slope restricted Hough transform failed in this experi-

TABLE II
ACCUMULATOR ARRAY FOR THE WEIGHTED SUBTEMPLATE METHOD

Rank Value Accumulator Coordinates

100 89 ( 56,118)
99 84 ( 57,118)
98 80 ( 56,117)
97. 65 ( 57,117)
96 62 ( 58,118)
95 59 187,147)
94 50 ( 59.118)
93 42 ( 55,118)
92 40 ( 58,116)

ment because it placed equal weight on all template points that
were matched. There was a considerable number of points of
equal slope on the template, especially on the straight portions
of-the boundary; thus, a large number of false matches occurred
between the points of the template and the boundary image,
resulting in false peaks in the accumulator array and the subse-
quent incorrect location of the part. Distinct weights cannot
be meaningfully assigned to points because they are all alike.
In contrast, distinct weights can be assigned to subtemplates
because they have enough structure to be distinguishable.
A more complex experiment was performed with a set of

nine parts. Fig. 12 shows templates derived from the parts.
Fig. 13 illustrates the weights associated with the subtemplates
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Q

Fig. 12. Templates derived from a set of nine parts.

of three representative parts from the set of nine parts. At
left, in the figure, the weight of a subtemplate is represented
graphically by a vertical line attached to the center of the sub-
template; the length of the line is proportional to the weight
of the subtemplate. At right, a histogram of the weights is
shown. Fig. 14(a) shows the boundary extracted from an
application scene in which the parts were piled in an arbitrary
manner. Fig. 14(b) shows the result of trying to locate the
shaded part using the slope restricted Hough transform. Its
position and orientation were incorrectly identified. Again,
since the restricted Hough transform placed equal weight on
each point of the template, there was a considerable number
of false matches and a false peak in the accumulation array
with a consequent false location of the part. Fig. 14(c) shows
the result of using the weighted subtemplate method to locate
the part.
In other experiments, with the pile in Fig. 14(a), it was found

that typical times for locating individual parts using the slope
restricted Hough transform were in the range 4-4.5 CPU min
using a VAX 11/780. In several cases, an incorrect match was
made. The typical times for the weighted subtemplate method
were in the range 3-3.5 CPU min. In contrast, no incorrect
matches were made. Preliminary results mentioned in the
Conclusion suggest recognition time can be considerably short-
ened if the recognition process is based primarily on the more
salient subtemplates. Both algorithms were written in C. Not
much was attempted in the way of optimizing the implementa-
tion of the algorithms, apart from representing the accumula-
tor arrays-very sparse arrays-as hash tables. This significantly
reduced storage requirements and made possible a speedup in
the search for the location of the maximum peak. The time to
calculate the weights for a part was approximately 20 CPU
min.

It is possible to get false matches using the weighted subtem-
plate method. They typically occur if the part to be located is
almost totally occluded, or if the exposed portion does not
distinguish the part from other parts. The latter situation is
not unlike the confusion a human observer would experience
when presented with views of occluded parts in which two or
more parts had all their distinguishing features hidden from
view.

VI. CONCLUSION

A method for recognizing partially occluded parts has been
presented. There are two principal components to the method.
The first is a subtemplate matching scheme derived from earlier
Hough transform techniques. This provides the features (sub-
templates) for the second component which is a weighting
scheme. The weighting scheme derives weights of the subtem-
plates that are a measure of their distinctiveness or saliency.
Since the saliency of a part's subtemplate is entirely dependent
on the parts with which it can appear (refer again to Fig. 1),
deriving the weights requires a priori knowledge about the set
of parts that can appear in an application scene. The saliency
weights are an embodiment of this knowledge and account for
the added recognition capability of the method over earlier
template matching methods. It is this important reliance on
a priori information that distinguishes the weighted subtem-
plate method from other template matching methods that use
weighting schemes (see [2, sect. 5] for a good summary of
these methods). However, the added recognition capability is
bought at the expense of having to know ahead of time what
the application scene may contain. Clearly, there are applica-
tions where this may not be possible. However, in our princi-
pal area of concern-recognizing manufactured parts-the set
of parts likely to appear can usually be determined.
The time complexity of the present method is O(h Ir| |,B).

There are several techniques which may reduce recognition
times that warrant further investigation. An obvious one, when
several parts are being sought, is to eliminate segments of the
boundary as soon as they are determined to belong to a part.
Another is to implement a coarse to fine search in matching

the subtemplates to the boundary segments. The subtemplate
matching is performed between subtemplates and boundary
images that have been resampled at coarse intervals in 0 - s
space, i.e., less frequently than every pixel. A coarsely sampled
subtemplate is matched to a coarsely sampled boundary seg-
ment and, if the match is poor, the matching coefficient is set
to zero. On the other hand, if the match is satisfactory, match-
ing is attempted again but with subtemplates and boundaries
more finely sampled. A sequence of increasingly more finely
resampled templates and boundaries is used in matching and,
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Fig. 13. Weights associated with representative parts.

if they continue to show satisfactory matches, a situation is
reached where the normal subtemplate is matched to the nor-

mal boundary, and the matching coefficient can be determined.
The potential for speedup lies in the fact that most matches
are very poor and that this can be recognized early in the above
sequence when the number of points in the matching is rela-
tively small. This technique requires a suitable definition of
satisfactory and poor matches.
A technique which has perhaps the greatest potential to re-

duce recognition times takes advantage of the saliency of the
subtemplates. A strategy is adopted where, after matching
only a few of the more salient subtemplates, the contents of
affected accumulators are compared to a prescribed "detection"

threshold. If the contents of one of these accumulators ex-

ceed the threshold, it is taken as a candidate for the associated
template's centroid; the entire template is rotated to the angle
of match and an attempt is made to match the entire template
to the boundary. Work on this technique is still preliminary
but it has shown to provide a considerable speedup-approxi-
mately 40 CPU seconds for a match. A quantitative method
of choosing a "detection" threshold has yet to be determined.
Such a threshold is needed also to determine if a part is absent.
The idea is based on the observation that a large part of the
recognition time is spent on matching the more common low-
weight subtemplates.

Finally, recognition times can be reduced if more than one

(e)

Unnormalized weiight

(f)
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concept is not intimately linked with boundary features; other
f>; >rf / features may be used, for example, internal edges are an ob-

vious addition. Less obviously, preliminary studies suggest
(t / x f fXthatfuture research consider working with subregions obtained

) Cgd t- t from a three-dimensional sensor. The three-dimensional tem-
plate is supplied by a solid model database; scaling is possible

from the range information.

AX tt sCJX/SJ ss ~~~~~APPENDIX
17l>_,/ _9 fn 2 Techniques in the numerical solution of least-squares prob-

-S \s , Cl /) lems include efficient methods for the solution of the follow-
<ii { ,fing problem:

Minimize: IFx f 12
Subject to: Gx g

(a) ,- where F is an n1 X n matrix, G is an n2 X n matrix, x is an n

,;C>,~~D) / fS vector (to be determined), f is an n, vector, andgis an n2 vec-
P)/ ( tor. The problem is referred to as a "least-squares with linear

inequality constraints" (LSI) in [9], which provides a detailed

e, 4 u (X>fdescription of the solution algorithm.
C" ,-l-. :S To take advantage of these solution techniques, it is first

r'% (-) I)>} < 1l gnecessary to show that E is symmetric, positive, and definite.
r

. / fS ,; Theorem: E is symmetric, positive, and definite.
Proof: Since E denotes the product DtD, E is symmetric.

C.,f4 g ,> If there exists an element of w, wi that is nonzero, then the
product cijwi is also nonzero because cq > 0 for all i and j
(every Ti and j match to some extent). This product must
contribute to some accumulator. Thus, there exists an s such
that =I and, consequently, such that a, >0. Therefore,

False match. ata > 0 provided w * O. But from the minimization problem
statement, wtEw = ata. Thus, E satisfies the definition of a

[Slope restricted H-oug,h.] ..[SlopeIloogh.] symmetric, positive, definite matrix.
(b)

Since E is symmetric, positive, and definite, Cholesky fac-

C) 0 \ / / torization can be used to factor E into the form UtU where U
is a real upper triangular -TI X TzI matrix. Consequently, the
minimization problem of Section IVmay be rewritten as the
following least-squares problem:

Minimize: || Uw 2

Subject to: itW = I and w > 0.

This is similar to a special case of the LSI problem, as can be
seen by setting

FU x-w, f=O,WC[ ] and g=[j

Correct match. to yield the following:

[Subtemplates with salient wveighitings.] Minimize: || Uw112
(c) Subject to: 1tw > l and w > 0.

Fig. 14. Experiments with a set of nine parts. -

This is equivalent to the minimization problem, if the inequal-
processor were employed in running the algorithm. For ex- ity ltw > 1 constraint is replaced with the equality, ltw = 1.
ample, each processor could be assigned to match the subtem- The following theorem shows that the solution is unaffected
plates for different parts. Strategies for multiprocessors are by changing the inequality constraint to an equality. The
discussed further in [11] . theorem will be stated in terms of minimizing wtEw rather
The experimental results presented suggest that saliency can than in terms of the least-squares form involving U.

be applied with advantage in the occluded parts problem. The Theorem. Given that E is symmetric positive definite, the
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problem

Minimize: wtEw

Subject to: ltw > 1 and w > _

has the same solution if ltw > 1 is replaced by Itw = 1.
Proof: A complete proof is omitted for brevity. Instead,

the basis for the validity of the theorem is sketched by refer-
ring to the two-dimensional case illustrated in Fig. 10. Clearly,
the inequality 1ltw > 1 allows the possibility of solutions above
the line given by w, + W2 = 1, i.e., when strict inequality holds.
Suppose the point X satisfies the constraints ltw > 1 and w >
0 and represents the minimum solution, then there is a hyper-
ellipse of constant value passing through X. Draw a line from
the origin through X. Since ltw > 1, there exists a point Y on
the line between X and the line w, + w2 = 1 which also satis-
fies all constraints. This can be expressed algebraically by

wy = kwx, where O< k < 1. Thus,

wtyEwy = k2wtxEwx < wxEwx
contradicting the minimality of X. Therefore, the solution
point lies on the line ltw> 1. X
Thus, the minimization problem of Section IV can be solved

using the LSI solution technique with the above substitutions
for F, x, f, G, and g.
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